Monday, 2 September 2013

Blocking Molecular Pathway Reverses Pulmonary Hypertension in Rats

Aug. 28, 2013 — Mark Nicolls and his colleagues discovered that blocking a pathway that causes inflammation could reverse a deadly condition known as pulmonary hypertension in rats.

Pulmonary hypertension, a deadly form of high blood pressure that develops in the lungs, may be caused by an inflammation-producing molecular pathway that damages the inner lining of blood vessels, according to a new study by researchers at the Stanford University School of Medicine.

The results, published Aug. 28 inScience Translational Medicine, suggest that using medications to block this pathway could lead to the first-known cure for the disease, apart from lung transplantation. The new research could also lead to a better understanding of other diseases involving inflammation of blood vessels, such as coronary artery disease, said Mark Nicolls, MD, senior author of the study and division chief of pulmonary and critical care medicine at Stanford, as well as a staff physician at the Veterans Affairs Palo Alto Health Care System.

"We believe that targeting inflammation is an exciting approach to augment current treatments for pulmonary hypertension because it may reverse the underlying cause of the disease," said Nicolls, who is also director of the Lung Immunology Program and an associate professor of medicine. "We believe this is going to be an approach that helps a large number of patients."

No comments:

Post a Comment

You only need to enter your comment once! Comments will appear once they have been moderated. This is so as to stop the would-be comedian who has been spamming the comments here with inane and often offensive remarks. You know who you are!