Monday, 15 April 2013

'Strikingly Similar' Brains of Human and Fly May Aid Mental Health Research


Apr. 11, 2013 — A new study by scientists at King's College London and the University of Arizona (UA) published in Science reveals the deep similarities in how the brain regulates behaviour in arthropods (such as flies and crabs) and vertebrates (such as fish, mice and humans). The findings shed new light on the evolution of the brain and behaviour and may aid understanding of disease mechanisms underlying mental health problems.

Based on their own findings and available literature, Dr Frank Hirth (King's) and Dr Nicholas Strausfeld (UA) compared the development and function of the central brain regions in arthropods (the 'central complex') and vertebrates (the 'basal ganglia').

Research suggests that both brain structures derive from embryonic stem cells at the base of the developing forebrain and that, despite the major differences between species, their respective constitutions and specifications derive from similar genetic programmes.

The authors describe that nerve cells in the central complex and the basal ganglia become inter-connected and communicate with each other in similar ways, facilitating the regulation of adaptive behaviours. In other words, the response of a fly or a mouse to internal stimuli such as hunger or sleep, and external stimuli such as light/dark or temperature, are regulated by similar neural mechanisms.

Dr Hirth from King's College London Institute of Psychiatry says: "Flies, crabs, mice, humans: all experience hunger, need sleep and have a preference for a comfortable temperature so we speculated there must be a similar mechanism regulating these behaviours. We were amazed to find just how deep the similarities go, despite the differences in size and appearance of these species and their brains."

Dr Strausfeld, a Regents Professor in the UA's Department of Neuroscience and the Director of the UA's Center for Insect Science, says: "When you compare the two structures, you find that they are very similar in terms of how they're organized. Their development is orchestrated by a whole suite of genes that are homologous between flies and mice, and the behavioral deficits resulting from disturbances in the two systems are remarkably similar as well."

No comments:

Post a Comment

You only need to enter your comment once! Comments will appear once they have been moderated. This is so as to stop the would-be comedian who has been spamming the comments here with inane and often offensive remarks. You know who you are!

Related Posts with Thumbnails

ShareThis